Round 17: Memory

Kristy Snyder Colling, PhD 04/01/2021

Memory

- Feelings, emotions, and thoughts occur in the present. Memory is a time machine that allows consciousness to travel back in time.
- Defines who we are by integrating our experiences into a coherent autobiography.

Stages of Memory

- Register information received through sensory channels
- Encode
 - Process for identification and association
 - Left Prefrontal regions
 - Limbic system evaluates for relevance
 - Links/associates with other information

Stages of Memory

Store

- Cerebral cortex & limbic system
 - Hippocampus & entorhinal cortex necessary for binding
 - Left hemisphere stores primarily verbal or general knowledge
 - Right hemisphere stores nonverbal & autobiographical information "experiential"
- Represented in distributed form

Retrieve

- Prefrontotemporopolar network
- Right Prefrontal regions
- Limbic system

Types of Memory

- Iconic/Echoic
 - Unimodal sensory areas
 - Retain information for milliseconds
- Short-term & Working memory
 - Parietal & Prefrontal areas
 - Dorsolateral prefrontal (DLPFC)
 - Online retention of 7+/- 2 items
 - Lasts up to a few minutes

Types of Memory

- Long-term memory
 - Lifelong retention of information
 - Implicit (Unconscious)
 - Inferred indirectly through faster performance on certain tasks (e.g., priming, conditioning)
 - Procedural
 - Motor skills
 - Damaged with basal ganglia & cerebellar lesions
 - Explicit/Declarative (Conscious)
 - Semantic/Factual
 - General facts
 - Damaged with lesion of left frontotemporopolar region
 - Episodic
 - Personal, autobiographical
 - Damaged with lesion of right frontotemporopolar region

Memory Assessment

- Free Recall
 - What do you remember?
- Cued Recall
 - P
 - B
 - G ____

- Recognition
 - Did you see any of these objects?
 - Dog
 - Ice cream
 - Lamp
 - Woman
 - Chair
 - Saxophone
 - Bed
 - Alarm clock
 - Teddy bear
 - Taxi

1:	Shoe
2	Motorcycle
3	Record player
4	Coke bottle
5	Computer
6	Heart
7	Taxi
8	Car
9	Woman
10	House

Serial Position Effect

- Primacy Effect
 - Tendency to remember the beginning of a sequence
- Recency Effect
 - Tendency to remember the end of a sequence

1	Shoe
2	Motorcycle
3	Record player
4	Coke bottle
5	Computer
6	Heart
7	Taxi
8	Car
9	Woman
10	House

What is a Memory?

- Engram
 - The pattern of cell firing that makes up a memory
 - Distributed storage
 - What you see is stored in visual cortex
 - What you heard stored in auditory context
 - What you felt physically stored in somatosensory cortex
 - How you felt emotionally stored in amygdala

- Hippocampal-Entorhinal complex
 - Establishes a directory for binding & searching for distributed information

How are memories made?

Hebbian Learning

- "Neurons that fire together, wire together"
 - Forms a network of distributed activity
 - Temporal coherence of neural activity within a set of simultaneously active & reciprocally interconnected neurons produces a record that can be used for subsequent reactivation of the entire response set in response to the activation of one of the components

Long-term potentiation

- Encourages more receptors on post-synaptic neuron
- Pre-synaptic neuron to release more transmitter (glutamate)
- Allows less activity from the presynaptic neuron to trigger an action potential in the post synaptic neuron

Forget

- If connections are not strengthened
- "Neurons that fire apart, wire apart"
- Targeted forgetting
 - Occurs during sleep
 - Tenuous connections that are not reinforced are removed
 - Removing unimportant information

Memory

- Why is learning/memory so difficult?
 - Limited number of neurons
 - Already occupied with previously stored information
 - New information needs to be written on top of or incorporated into the existing scaffold
 - To encode & access new information and experiences, fragile and initially sparse linkages have to be established, nurtured, and inserted into the matrix of existing information

Mnemonics

- How do you insert new information into the existing knowledge matrix?
 - Method of Loci/Memory palace (Cicero, Ancient Greece)
 - Contextual anchors

Let's remember the periodic table of elements:

- 1. Hydrogen
- 2. Helium
- 3. Lithium
- 4. Beryllium

Memory

- Why is learning/memory so difficult?
 - Amount of new information is boundless.
 - Your brain must protect itself by remembering only the most important information
 - Filter 1: The Attentional System
 - Selects behaviorally relevant information for further consideration
 - Filter 2: The Limbic System
 - Behaviorally relevant information is stored in initially transient form that induces a small amount of neural change in the association cortices
 - Allows new information to enter associative readjustments before being assimilated into a more permenant form
 - Allows competition so only the "fittest" survive and occupy limited synaptic space
 - Forgetting easy unless emotionally salient

Role of the Limbic System

- Why does the limbic system play such a crucial role in memory?
 - Evolution
 - Memory's initial function was probably related to recalling contingencies regarding food and danger
 - Remember where to get the best food & avoid being hurt or eaten
 - Memory started expanding beyond immediate survival
 - Ensuring that information with high emotional or motivational relevance enjoys a competitive advantage
 - At first, the initially fragile and sparse linkages of the neural pattern depend on the limbic system for maintenance and coherent retrieval

The Limbic System: Memory & Learning

- Memory & Learning
 - Papez Circuit
 - Subiculum -> fornix -> mamillary bodies -> thalamus -> cingulate gyrus
 - Paraphypocampal gyrus -> entorhinal cortex -> hippocampus dentate gyrus -> subiculum
 - Prefrontal cortex involve memory with thoughts & decision making

Role of the Prefrontal Cortex

- Frontal lobe participation in memory related tasks
 - Reconstruction of context and temporal order
 - On-line manipulation of encoding & retrieval
 - Associative search of internal data stores
 - Provides contextual constraints to keep reconstructed memories within the bounds of possibility

Damage to Frontal Lobes

- Undermines the effectiveness of encoding & retrieval
- Causes impoverished associative linkages that are necessary for reconstructing context and temporal order
- Decreases speed of searching internal stores
- Increases tendency to confabulate

Memory Retrieval

• As additional linkages become established through reciprocal connections with transmodal and unimodal areas the information becomes less dependent on limbic system and can be accessed through numerous associations & approaches which may bypass the hippocampus- entorhinal complex

- Network involved in retrieving old memories
 - Task requirements:
 - Will initiation
 - Selection of information among competing alternatives
 - Post retrieval monitoring process

Amnesias

- Retrograde Amnesia
 - Inability to retrieve information that had been stored <u>prior</u> to the onset of the amnesia
 - May be due to the loss of the information (Alzheimers)
 - May be due to inability to retrieve the information
 - Associated with damage to Temporopolar regions
 - Temporopolar regions & its connections with the limbic system coordinates access to memories that are encoded in association regions

Amnesias

- Anterograde Amnesia
 - Inability to acquire new information for long-term storage and retrieval
 - Hippocampus necessary for memory consolidation
 - Papez Circuit

- HM head trauma -> seizures
- 1953 William Scoville neurosurgeon removed HM's Hippocampus
- Seizures disappeared, no change in personality, even increase in IQ
- Unable to form new long-term memories

Amnesias

- Short-term/Working memory intact
 - Could remember things for about 15 mins by repeating information to himself
- Implicit memory intact
 - Procedural motor knowledge relies on different mechanisms
 - Procedural memory relies more on basal ganglia and cerebellum
 - Distinction between "knowing that" & "knowing how"

Neurofeedback Treatments

Standardized Protocols

- Reward increases in alpha, specifically upper alpha, over sensory motor strip
 - SMR (12-15)
 - SMR/theta & SMR/beta ratios
 - Better cued recall performance & semantic working memory
- Increase low beta and decrease theta & high beta
 - Improved working memory

Our Approach

- Individualized NFB protocol based on EEG brain map
 - Reducing specific excesses in whatever band necessary
 - Increasing connectivity
 - Frontal regions for working memory temporal/parietal for general memory
- Vielight gamma Photobiomodulation
 - Stimulate mitochondrial respiration & ATP synthesis
 - Improved memory and motor control

Thank You

https://www.researchgate.net/publication/10937788_The_effe ct_of_training_distinct_neurofeedback_protocols_on_aspects_of_cognitive_performance